Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

نویسندگان

  • Jessica R Terrill
  • Hannah G Radley-Crabb
  • Tomohito Iwasaki
  • Frances A Lemckert
  • Peter G Arthur
  • Miranda D Grounds
چکیده

The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice.

Oxidative stress has been implicated in the pathology of the lethal skeletal muscle disease Duchenne muscular dystrophy (DMD), and various antioxidants have been investigated as a potential therapy. Recently, treatment of the mdx mouse model for DMD with the antioxidant and cysteine and glutathione (GSH) precursor n-acetylcysteine (NAC) was shown to decrease protein thiol oxidation and improve ...

متن کامل

Dysferlinopathies.

Dysferlinopathies encompass a large variety of neuromuscular diseases characterized by the absence of dysferlin in skeletal muscle and an autosomal recessive mode of inheritance. So far, three main phenotypes have been reported: Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD 2B), and distal myopathy with anterior tibial onset (DMAT). A growing number of clinical variants ha...

متن کامل

Comparison of oxidative stress between patients with diabetes type 2 and healthy

Introduction: Diabetes mellitus is one of the most common chronic diseases around the world with increasing prevalence in Iran. Weakening of the antioxidant defense system that accompanies this illness may lead to several complications. In this study, we evaluated the parameters of oxidative stress in patients with type 2 diabetes and compared them with healthy individuals. Methods: In this c...

متن کامل

Screening for increased protein thiol oxidation in oxidatively stressed muscle tissue.

Elevated oxidative stress can alter the function of proteins through the reversible oxidation of the thiol groups of key cysteine residues. This study evaluated a method to scan for reversible protein thiol oxidation in tissue by measuring reduced and oxidized protein thiols. It assessed the responsiveness of protein thiols to oxidative stress in vivo using a dystrophic (mdx) mouse model and co...

متن کامل

N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 280 17  شماره 

صفحات  -

تاریخ انتشار 2013